Fabrication and Imaging of 2D Nanomembranes and Graphene using Electron and Helium Ion Microscopes

Armin Gölzhäuser

Fakultät für Physik, Universität Bielefeld

Outline:

Part I : Fabrication of 2D carbon nanostructures

Nanomembranes from SAMs

-Graphene and Graphenoids -Nanoribbons and Nanosieves **Chemical Lithography** -Polymer Carpets

- -Protein Biochips
- -Janus Membranes

Part II : Helium Ion Microscopy

Basics Nanomembranes and Biolmaging

Concepts of Nanostructure Fabrication

Integrated circuit Lithography (physics, engineering)

Eukaryotic cell Self-assembly (chemistry, biology)

Objective: Building (bio)functional molecular nanostructures with lithography and self-assembly

2-Dimensional Carbon Nanostructures

Graphene:

solid state, hard

Fabrication procedures :

Exfoliation of graphite/HOPG
Epitaxy of SiC/TiC
Oxidation/reduction of graphite
CVD of hydrocarbons
Hard to functionalize

Cell membranes:

molecular, soft, directional

Fabrication procedures :

- •Self-Assembly
- •Molecular recognition
- •Enzymes
- •Biology

Functional

2-Dimensional Carbon Nanostructures

A molecular path to two-dimensional carbon nanostructures

Molecules

Solid substrates

self-assembly

Self-Assembled Monolayers (SAMs)

cross-linking by electron-beam

hanosheet

Carbon Nanomembranes

pyrolysis

chemical, biological functionalization

Graphene and Graphenoids

Electronics, NEMS,

Sensors, ...

Functional Membranes

Biomimetic, Medical, Biosensors,...

Self-Assembled Monolayers (SAMs)

soft film on hard substrate

Fabrication procedures and conditions:

- Liquid state, solutions
 ambient temperature and atmospheric pressure
 - •crystallization, equilibrium

Easy to functionalize by choice of molecules and substrate

Electron and Photon induced Chemical Control

Electron-molecule interaction:

- ... Dissociative Electron Attachment (DEA) via Transient Negative Ion (TNI)
- ... requires low electron energies... typically below 10 eV

Electron and Photon induced Chemical Control in SAMs

W. Geyer et al. Appl. Phys. Lett 75, 2401 (1999)
W. Eck et al. Adv. Mater. 12, 805 (2000)
A. Turchanin et al. Small 3, 2114 (2007)
A. Turchanin et al. Langmuir 25, 7372 (2009)

Preparation of Nanomembrane

Preparation of Nanomembrane

1 nm thick Membrane on SiO/Si: Interference Contrast

optical micrograph

photograph

Nanosheet on TEM grid

TEM grid (Au 1500mesh), SEM Image

Nottbohm et al., Ultramicroscopy 108, 885 (2008)

Large area Free-standing Nanomembrane

Nanomembrane transfered onto Cu TEM grid, imaged by SEM (A. Beyer)

Nanomembrane supports for HRTEM: Imaging of - Co nanoparticles (ca. 4 nm)

Ultramicroscopy 108, 885 (2008)

TEM - Au₅₅ Cluster

Carbon film

Nanosheet

(J. Mayer, A. Sologubenko, RWTH Aachen)

Thermal Properties of Carbon Nanomembranes

Heating of biphenylthiol nanosheet on SiO₂-Si in UHV

Appl. Phys. Lett. 90, 053102 (2007)

Heating of pristine and cross-linked BPT SAMs (XPS)

A. Turchanin et al. Langmuir 25, 7372 (2009)

Heat induced molecular desorption

A. Turchanin et al. Langmuir 25, 7372 (2009)

Membrane mechanics: Bulge Tests

p=0

~		-41µm→
		0.24um
	Y	

p=750Pa

Mechanical properties of nanomembranes

Pressure-deflection relationship for a stressed nanomembrane:

$$P = P_1 + P_2 = \frac{Et}{a^4(1-v)}h^3 + \frac{\sigma_0 t}{a^2}h$$

J.J.Vlassak and W.D. Nix, J. Mater. Res. 7 (1992) 3242

t=1.5nm: thickness v=0.35: Poisson's ratio E=Young's modulus σ_0 = residual stress a: half-width b/a: aspect ratio

E = 10.0 GPa σ₀ = 40.0 MPa

some E values (Gpa): rubber 0.01....0.1, polystyrene 3.0.....3.5 copper 110... 130, diamond 1050...1200

Comparison with other Free-standing Nanomembranes

Freestanding nanomembranes	Thickness (nm)	Fabrication Method	Young's Modulus (GPa)	Tensile Strength (MPa)
Nanocomposite membranes [1]	55	Spin-assisted layer by layer assembly	8±3.5	40100
IPNs hybrid nanomembranes[2]	35	Spin-coating and polymerization	N.A.	105
Nanomembranes (epoxy resin)[3]	20	Spin-coating and baking	N.A.	30
Nanomembranes[4] (melamine,phthalic, rethane,epoxy)	1924	Spin-coating, irradiation, baking	1.23.5	1022
Carbon Nanomembrane	1.5	Self-assembly & cross-linking	10	150420

[1] Nature Materials 3 (2004) 721; Advanced Materials 17 (2005) 1669

[2] Nature Materials 5 (2006) 494

[3] Advanced Materials 19 (2007) 909

[4] Macromolecules 40 (2007) 1369

Effect of Annealing on Young's Modulus

Adv. Mater. 21, 1233 (2009)

Electrical Characterization of Nanomenbranes:

Electrical Characterization of Nanomenbranes: 2-point measurement of free-standing membrane in UHV SEM/STM

Electrical Characterization of Nanomenbranes: 4-point measurement of supported membrane on SiO-surface

$$p_{s} = \frac{\pi}{\ln(2)} \frac{V}{I} = 4.532 \frac{V}{I} \Omega / square$$

Electrical conductivity of nanomembrane:

⇒Nanomembrane conductive after annealing ⇒Tunable electrical resistance !!

Adv. Mater. 21, 1233 (2009)

Structural transition (insulator to conductor) in nanomembrane (Raman spectroscopy and TEM):

Adv. Mater. **21**, 1233 (2009)

Perforating and functionalizing carbon nanomembranes

Thermal Desorption Lithography (TDL): Fabrication of Graphenoid Nanoribbons

25

Irradiation dose (mC/cm²)

100

C.T. Nottbohm et al., J. Vac. Sci. Technol. B 27, 3059 (2009)

Perforated Nanomembranes by EUV Interference Lithography

focused synchrotron irradiation (92.5 eV, 13.5 nm) Two coherent beams are forming a linear fringe pattern with a sinusoidal intensity distribution.

H. H. Solak, Paul Scherrer Institut

Nanosieve fabrication by EUV-IL

M. Schnietz et al., Small 23, 2651 (2009)

Nanosieve membranes with a thickness of 1 nm via EUV-IL

200 x 225 nm period,

hole diameter = 138 ± 17 nm

M. Schnietz et al., Small 23, 2651 (2009)

Freestanding nanosieve coated with 5 nm Au

Electron induced cross-linking

Electrons, 10 -500 eV area dose: 1 -10 mC / cm^2

 $\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow$

Appl. Phys. Lett. 75, 2401 (1999)
Electron induced cross-linking and NO₂ to NH₂ conversion "Chemical Lithography"

Appl. Phys. Lett. 75, 2401 (1999)

Adv. Mater. 12, 805 (2000)

Electron induced cross-linking and NO₂ to NH₂ conversion: Chemical lithography and subsequent functionalisation

Adv. Mater. **12**, 805 (2000) Small **3**, 2114 (2007)

Polymer Carpets

Small 6, 1623 (2010)

Polymer Carpets: Thickness of Polymer Brush as a Function of Polymerization Time

True-to -scale 3d AFM images of polystyrene carpets on nanosheet/Si

Small 6, 1623 (2010)

Buckling of Polymer Carpets

Building a Sensor (and Actuator) by Buckling of Polymer Carpet

Photographs and AFM measurements of P4VP carpets in a) ethanol, b) water at pH 7 and c) water at pH 2.5.

Small 6, 1623 (2010)

Electron Transmission through freestanding Polymer Carpets

Figure 7. a) Photograph, b) optical micrograph, and c) STEM image of freestanding PS carpets. d) The transmittance of 20 keV electrons was determined from STEM images of PS-carpet edges, such as in (c). An attenuation length of 36.8 nm (solid red line) \pm 2.6 nm (dashed lines) was calculated. e) STEM image of a freestanding PS carpet at higher magnification.

Small 6, 1623 (2010)

Immobilization of biomolecules

surface template

20S Proteasome - Nanocompartment for Cellular Protein Degradation – Model system for AFM studies

Thermoplasma acidophilum 700.000 Da 11 x 15 nm

(with R. Tampé, U Frankfurt)

NTA/His-tag interaction: molecular tweezers

histidine tag (His-tag)
easily introduced into proteins by genetic engineering

nitrilotriacetic acid (NTA) • high specificity for neighboring histidine residues

• easily functionalized

HC

HO

reversible binding

imidazole ETDA low pH high affinity by utilization of multivalent chelators: *bis-NTA, tris-NTA*

F.H. Arnold, Metal-affinity protein separations, Academic Press, 1992 S. Lata, A. Reichel, R. Brock, R. Tampé, J. Piehler, JACS 127 (2005) 10205

Assembly of the structured chips: schematic representation

molecular self-assembly e-beam/EUV lithography chemical biology molecular recognition

tris-NTA

functional immobilization of His₆-taged proteins

XPS characterization of the elemental components of the chip' surface

different types SAMs

A.Turchanin, A. Tinazli, M. El-Desawy, H. Großmann, M. Schnietz, H. H. Solak, R. Tampé, A. Gölzhäuser, Adv. Mater. 20, 471 (2008)

Grafting of multivalent chelators (tris-NTA)

thickness increase ~6 Å tris-NTA:NBPT~1:9 experimental C:O:N =11.2:3.5:1 theoretical C:O:N =11.1:3.4:1

- C1s^I 284.9 eV (alkane-like groups)
- C1s^{II} 286.8 eV (N-C bonds)
- C1s^{III} 288.9 eV (carboxylic groups)
- N1s 399.8 eV (amine groups)
- O1s 531.9 eV (carboxylic groups)

Adv. Mater. 20, 471 (2008)

Generation of protein repellent matrix by exchange

Protein chip functioning: an in situ AFM study

Protein chip functioning: an in situ AFM study

Protein nanopatterns by EUV Interference Lithography

focused synchrotron irradiation (92.5 eV, 13.5 nm) Two coherent beams are forming a linear fringe pattern with a sinusoidal intensity distribution.

H. H. Solak, Microelectronic Engineering 78-79 (2005) 410-416

High resolution chemical patterns by EUV-IL: AFM

50 nm lines

A. Turchanin, M. Schnietz, M. El-Desawy, H. H. Solak, C. David, A. Gölzhäuser, Small 3, 2114 (2007)

Immobilization of protein nanoarrays : in situ AFM characterization

Proteasome lines

100 nm period

Protein lithography

A.Turchanin et al., Adv. Mater. 20, 471 (2008)

Bifunctional Nanomembranes: "Janus Membranes"

directionality of a 2D nanomembrane....

Different fluorescent molecules on top and bottom of membrane

O.

_-CH₃

ĊH₃

Monitoring molecular coupling by XPS

Flourescence detection of TMR and ATTO

Step 3: Coupling of TMR to Top and ATTO647N to Bottom

Fluorescence TMR

FRET (Förster Transfer)

Fluorescence ATTO647N

SEM

Angewandte Chemie, In press

Single and double layers

Visualizing 2-dimensional Nanomembranes by scanning electron microscopy

on Cu grid

on perforated C foil

SEM produces acceptable pictures, but low contrast and time consuming (2-3h/image)

Is there a better imaging technique ?

Helium Ion Microscope

- World's first commercially available Helium Ion Microscope (Carl Zeiss)
- Analogous to a SEM but uses Helium ions instead of electrons
- Image formed using secondary electrons and backscattered ions

ALIS – Atomic Level Ion Source

ALIS – Atomic Level Ion Source

Field Ion microscope:

- Small emitters
- Beam current shared among hundreds or thousands of atom

ALIS:

- 3 atom shelf called the "trimer" created through field evaporation
- Single atom selected for final probe
- Source size < 1 Atom diameter</p>

Column Architecture & Uniqueness

Architecture:

 Electrostatic optics similar to SEM / Ga FiB

Unique:

- He lons:
 - Wave Length (Resolution)
 - Sample Interaction
 - Contrasts
 - Surface Sensitivity
 - Charging
- Source:

Brightness (Resolution/DoF)

ORION[™] HIM Ultra High Resolution

ORION[™] Resolution Recent Status Update 0.24 nm resolution demonstrated in R&D lab

Specimen "Asbestos fibre" on holy carbon

SE Imaging World Record Resolution 0.24 nm (+/- 0.04 nm)

- Working Distance: 6 mm
- TEM like "salt and pepper pattern" visible on carbon foil
- 0.24 nm resolution measured repeatedly on ORION R&D System

Linescan from edge of Asbestos fibre averaged over 20 neighbouring lines

*upgrade path will be available for Orion Plus customer

Unique Material Contrast

Secondary Electron image from the ORION[™] shows superior material contrast in addition to surface detail

Imaging of SAM/Au Surface after Chemical Lithograpy

Visualizing 2-dimensional Nanomembranes

HIM

Freestanding nanomembranes on holey carbon foil

Quantifoil Holey Carbon Film, He⁺ Ion Image

(A. Beyer)

Visualizing 2-dimensional Nanomembranes

SEM

Nanomembranes from SAMs

- 1 nm thick freestanding
- Transition to Graphene
- Polymer carpets
- Nanosieves
- Janus Nanomembranes

Helium Ion Microscopy

Imaging with He⁺

- Chemical contrast
- High resolution

Acknowledgements:

Universität Bielefeld

Bielefeld group: Andrey Turchanin, André Beyer, Christoph Nottbohm, Xianghui Zhang, Ishan Amin, Berthold Völkel, Mohamed El-Desawy, Min Ai, Eline Oberländer, Nils Mellech, Heiko Muzik, Mark Schnietz, Matthias Büenfeld, Laxman Kankate, Zinkun Zheng <u>http://www.physik.uni-bielefeld.de/pss</u> **E-Mail: ag@uni-bielefeld.de**

Collaborations: <u>Paul-Scherrer-Institut</u>: Harun H. Solak <u>Univ. Bielefeld:</u> Günter Reiss, Andreas Hütten, Mark Heilemann, Markus Sauer <u>PTB:</u> Reiner Stosch, Peter Hinze, Dirk Weber, Thomas Weimann <u>Univ. Heidelberq:</u> Wolfgang Eck, Michael Grunze <u>Univ. Frankfurt:</u> Helge Großmann, Robert Tampé <u>KIT Karlsruhe:</u> Christof Wöll <u>Univ. Marburq:</u> Gregor Witte, Daniel Rhinow, Norbert Hampp <u>RWTH Aachen:</u> Alla Solugubenko, Joachim Mayer <u>TU Dresden:</u> Rainer Jordan, Marin Steenackers <u>NCEM Berkeley:</u> Christian Kisielowski <u>Carl Zeiss:</u> Larry Scipioni, Frank Stietz

Deutsche Forschungsgemeinschaft

