Information and Maxwell's **Refrigerator**

Haitao Quan Apr. 18th, 2013

Joint work with Prof. Chris. Jarzynski and Dibyendu Mandal, submitted

Outline

- Introduction
- Information refrigerator
- Clausius's inequality
- Summary

Introduction

Is there any relation between information and heat?

Or is there any relation between the computer and the refrigerator?

What is information?

What is one bit of information?

• Information is related to probability, once you know the probability distribution, you know the information amount from one measurement

- \bullet Obtaining information $\;\;\langle \overline{\longrightarrow}\;\;\;$ Reducing uncertainty
- \bullet Shannon Information amount: $I = -\sum p_i \log_2 p_i$ *I*= $-\sum p_i \log_2$ *p*

$$
I = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{2}\log_2\frac{1}{2} = 1
$$
 (bit)

i

Maxwell's demon thought experiment

Theory of Heat (Longmans, London, 1871)

1831 - 1879

Szilard's engine

Leo Szilard1898-1964

Szilard's Single Molecule Engine (1929)

Landauer's principle (1961):

Each bit of lost informationwill lead to an release of amount of KTln 2 heat

V

There is a lower bound of heat a computer must dissipate to process a given amount of information.

V

Charles H. Bennett1943-

"The erasure of the memory of the demon compensates the entropy decreases and thus save the second law."

Is it possible to build an autonomous Maxwell's refrigerator without a demon?

- •This refrigerator needs to rectify thermal fluctuations
- \bullet No intelligent creature (demon) is involved
- \bullet Achieving heat flow against temperature gradient by utilizing information
- \bullet The erasure of information compensates the entropy decrease

Information refrigerator

Heat engine and Refrigerator

Heat engine

Refrigerator (Heat pump)

high-Treservoir

ัี⊙⊬้

low-Treservoir

 \blacktriangleright W

Fluctuations in small systems

Feynman's Ratchet and Pawl (1963)

C. Jarzynski, et al PRE, 59, 6448 (1999); Z. C. Tu, J. Phys. A, 41, 312003 (2008)

- •Rectifying thermal fluctuations, either a heat engine or a refrigerator
- •No information is involved

In order to mimicking Maxwell's thought experiment, we need to input information instead of mechanical work

Feynman refrigerator and information refrigerator

The Feynman refrigerator

- • This refrigerator needs to rectify thermal fluctuations
- \bullet Input mechanical work
- • The conjugate cycle is a heat engine
- \bullet No information content is involved

The information refrigerator

- • This refrigerator needs to rectify thermal fluctuations
- • Input low entropy memory unit
- \bullet The conjugate is an information eraser
- • No mechanical work is involved

Schematic figure of the information refrigerator

What is fixed?

Temperatures of the two reservoirs

The initial probability distribution of the bits

 τ The period of interaction between the two-level system and every bit

 B $P^{\,}_{0}$

B $P_{\rm 1}$

Information refrigerator

Two-level system •Different energy•Detailed balance

Input bits •Equal energy•No transition

 $\overline{0}$ $\mathbf 1$

Cooperative transition•Heat exchange

Heuristic analysis: All bits prepared in "0"

Microscopic equations of motion

Classical master equation
\n
$$
\frac{d\vec{P}(t)}{dt} = \Re \vec{P}(t) \qquad \vec{P}(t) = \begin{pmatrix} P_{0u}(t) \\ P_{0d}(t) \\ P_{1u}(t) \\ P_{1d}(t) \end{pmatrix}
$$
\n
$$
\text{transition matrix}
$$
\n
$$
\mathcal{R} = \begin{pmatrix} \cdot & \gamma(1-\sigma) & 0 & 0 \\ \gamma(1+\sigma) & \cdot & 1+\omega & 0 \\ 0 & 1-\omega & \cdot & \gamma(1-\sigma) \\ 0 & 0 & \gamma(1+\sigma) & \cdot \end{pmatrix}
$$

Microscopic equations of motion

Strategy to solve the dynamics

Initial state of the two-level system and the bit

$$
\begin{pmatrix}\nP_{0u}(0) \\
P_{0d}(0) \\
P_{1u}(0) \\
P_{1d}(0)\n\end{pmatrix} =\n\begin{pmatrix}\nP_{0}^{B} \times P_{u}^{D} \\
P_{0}^{B} \times P_{d}^{D} \\
P_{1}^{B} \times P_{u}^{D} \\
P_{1}^{B} \times P_{u}^{D}\n\end{pmatrix}\n\qquad\n\Longrightarrow\n\begin{pmatrix}\nP_{0u}(\tau) \\
P_{0d}(\tau) \\
P_{1u}(\tau) \\
P_{1u}(\tau)\n\end{pmatrix} =\ne^{\Re \tau} \begin{pmatrix}\nP_{0}^{B} \times P_{u}^{D} \\
P_{0}^{B} \times P_{d}^{D} \\
P_{1}^{B} \times P_{u}^{D} \\
P_{1}^{B} \times P_{u}^{D}\n\end{pmatrix}
$$

The marginal distribution of the two-level system

$$
\begin{pmatrix} P_u^D(\tau) \\ P_d^D(\tau) \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} P_{0u}(\tau) \\ P_{0d}(\tau) \\ P_{1u}(\tau) \\ P_{1d}(\tau) \end{pmatrix}
$$

Periodic steady state of the two-level system

$$
\begin{pmatrix}\nP_u^{D,ps}(\tau) \\
P_d^{D,ps}(\tau)\n\end{pmatrix} = \begin{pmatrix}\n1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1\n\end{pmatrix}\n\begin{pmatrix}\nP_{0u}(\tau) \\
P_{0d}(\tau) \\
P_{1u}(\tau)\n\end{pmatrix} = \begin{pmatrix}\nP_u^{D,ps}(0) \\
P_d^{D,ps}(0)\n\end{pmatrix}
$$

The probability distribution of the outgoing bits

$$
\begin{pmatrix} P_0^B(\tau) \\ P_1^B(\tau) \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{pmatrix} e^{\Re \tau} \begin{pmatrix} P_0^B(0) & 0 \\ 0 & P_0^B(0) \\ P_1^B(0) & 0 \\ 0 & P_1^B(0) \end{pmatrix} \begin{pmatrix} P_u^{D,ps}(0) \\ P_d^{D,ps}(0) \end{pmatrix}
$$

The periodic steady sate depends on the period $-\boldsymbol{\mathcal{T}}$

Two competing driving forces

Temperature gradient

$$
\varepsilon = \frac{\omega - \sigma}{1 - \omega \sigma} = \tanh \frac{(\beta_c - \beta_h)\Delta E}{2}
$$

Low entropy of the input bits

$$
\delta = P_0^B(0) - P_1^B(0)
$$

If the former wins $\;\;$ ε $>$ δ It is an information erasure If the later wins $\varepsilon < \delta$ It is an information refrigerator Heat flux from the master equation

Where

$$
\alpha = \sqrt{1 + \gamma^2 + 2\gamma\sigma\omega} \qquad , \quad \mu_4 = 1 - \delta\omega.
$$

Heat flow from low temperature to high temperature

$$
Q_{c\rightarrow h} = \Delta E \frac{\delta - \varepsilon}{2} \eta(\Lambda)
$$

Shannon entropy change of every bit

$$
\Delta S_B = -k_B \Big[P_0^B(\tau) \ln P_0^B(\tau) + P_1^B(\tau) \ln P_1^B(\tau) \Big] + k_B \Big[P_0^B(0) \ln P_0^B(0) + P_1^B(0) \ln P_1^B(0) \Big]
$$

"Phase diagram" of the device

Clausius inequality

$$
Q_{c \to h}(\beta_h - \beta_c) + \Delta S_B \ge 0
$$

Information entropy increase in every bit

$$
\Delta S_B = -k_B \Big[P_0^B(\tau) \ln P_0^B(\tau) + P_1^B(\tau) \ln P_1^B(\tau) \Big] + k_B \Big[P_0^B(0) \ln P_0^B(0) + P_1^B(0) \ln P_1^B(0) \Big]
$$

The second law is not violated if we identify the information entropywith the thermodynamic entropy

Lower bound on heat dissipation in information processing

 $10^{-21} J$ In modern silicon device it is 1000 times higher than that limit Heat dissipated when one bit is erasedAntoine Berut et al., Nature, 483, 187 (2012)

Experimental relevance

Colloid particle

- •G. M. Wang et al, Phys. Rev. Lett., 89, 050601 (2002)
- •V. Blickle et al, Phys. Rev. Lett., 96, 070603 (2006)
- •Tongcang Li et al, Science, 328, 1673 (2010)

Biosystems Jan liphardt et al Science, 296, 1832 (2002)

Superconducting qubitH. T. Quan et al Rev. Lett. 97, 180402 (2006)

Trapped ion systemG. Huber et al Phys. Rev. Lett. 101, 070403 (2008)

Reminding

"Heat can never pass from a colder to a warmer body without some other changeconnected therewith, occurring at the same time." --- R. Clausius, (1854)

Summary

Summary

•We introduce an autonomous model to generate heat flow against the thermal gradient mimicking the Maxwell's original idea

•Heat can be pumped from a low temperature to a high temperaturereservoir if there is a memory register to which we can write information

•The increases of the information entropy of the memory compensates the decreases in the thermodynamic entropy.

